skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yao, Ziyu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Clinical question answering (QA) aims to automatically answer questions from medical professionals based on clinical texts. Studies show that neural QA models trained on one corpus may not generalize well to new clinical texts from a different institute or a different patient group, where large-scale QA pairs are not readily available for model retraining. To address this challenge, we propose a simple yet effective framework, CliniQG4QA, which leverages question generation (QG) to synthesize QA pairs on new clinical contexts and boosts QA models without requiring manual annotations. In order to generate diverse types of questions that are essential for training QA models, we further introduce a seq2seq-based question phrase prediction (QPP) module that can be used together with most existing QG models to diversify the generation. Our comprehensive experiment results show that the QA corpus generated by our framework can improve QA models on the new contexts (up to 8% absolute gain in terms of Exact Match), and that the QPP module plays a crucial role in achieving the gain. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. null (Ed.)